Newton never dies

It only gets new
hardware

Paul Guyot
Worldwide Newton Conference 2004



Introduction

%2”Newton

2, underground
' for the MP2x00 and eMate.. ..




Introduction (i)

* Decreasing, limited supply of hardware

* What is so great about the Newton cannot be
found in other PDAs and Operating Systems :

* Best industrial handwriting recognition
* Data-centered
* Newton Intelligence

* Apple will not license NewtonOS to the
community



Introduction (ii)

* NewtonOS begins to be a little bit rusty for
today’s uses and this is going to worsen:

* No decent Java virtual machine

* No CSS2 web browser and no cryptographic
package (SSL/SSH)

* Poor IPv4 (current version of Internet) and
no IPv6 (next generation of Internet)



Introduction (iii)

* In spite of huge efforts to keep the Newton up
to date

* WiFi driver with many supported 802.1 Ib
cards

* Bluetooth drivers
* Phone-like exchange capabilities (V-Cards...)



What kind of future!?



“Let’s rewrite NewtonQOS”

* “Don’t you think we could rewrite a new

operating system with all the good things of
NewtonOS?”

* Huge task (think about the cost of the
Newton)

* No immediate reward until the project is
well advanced

* |t cannot be too close to the Newton
because of Apple’s patents

* No good handwriting recognition
* NewtonScript is a key element of NewtonOS



GNUton Gy
(NewtonScript everywhere) e

I

* “The Newton is NewtonScript, let’s write a
NewtonScript environment”

* Since NewtonOS 2.0, less and less
NewtonOS code is in NewtonScript.

* NewtonScript only is for the interface and it
only works on top of native code.

* There is a huge amount of code to rewrite.

* Many features such as the handwriting
recognition are not written in NewtonScript.



The Einstein Project

* |-Write a Newton Emulator with all the
hardware

* 2- Port NewtonOS to ARM-powered PDAs

e 3- Extend NewtonOS on this new hardware

* Each small step is important for the platform



The architecture of the
Newton (2.1 units)

StrongARM . ROM
(Processor I (MewtonO5)
Voyager

Chipset

Hardware RAM




The problem of the
Voyager Chipset

* “Perhaps one day, [Brian Parker (of Palm
Emulator fame)] and Paul Guyot will team up
and write the Newton emulator for the rest of
us.Where oh where can we get the Voyager
chipset instructions?” (Adam Tow, 2004)

* Cirrus developed it with Apple and will not
produce any or give us the specifications.



The complexity of an
emulator

* “A Newton emulator has to emulate not only
the ARM CPU but all the specialized ARM
MMU functions and the custom hardware for
DMA, IR, Flash, display, etc, etc. Not a simple
job. | would estimate (and | have 30 years
experience in systems and software
engineering) that this is at least 5 man years of
effort; attempting it without the detailed
hardware documentation for a Newton
MP2000 would almost certainly fail.” (John
Arkley, Apple Employee #88, 04/1999)



s it pointless!?



£-4 Terminal Fichier Edition Défilement arriére Police Fenétre Aide

paul @ droopy

Write word gccess to unknown bonk #3 ot POxEFEE04E8 (AOEEE464 % 5
Write word acoess to unknown bank #3 ot PBxEFASDEEE (ABAAEEFF )
Read word gocess to unkhnown bank #3 at PExBFES6468

RE = BCE3FAE4
Rl = BCE3FICH
Rz = BERLECEC

|
|
|
R3 = AEEEEAGA | Write word ocoess to unknowh bank #3 ot PBxEFA968EE (ABOAGEAGE )
R4 = BCE3FAB4 | Write word occess to unknown bonk #3 ot PExEFESGEEE (HBEEBEEEG )
RE = GARPAAEA | Write word acocess to unknown bonk #3 ot POxEFO020E (AEOEEE4E
RBE = BLCESFEEA | Write byte ogoccess to unknown bonk #3 ot PExBFLFZOEE = 62
RY = BEEAREEA | Write byte access to unkhown bank #3 ot PBxEFLFZ08a = 79
\ . , R& = BCESFAFC | Write byte access to unknown bonk #3 ot PBxBF1F3808 = A9
-~ R = BCESFEER | Write byte occess to unknown bank #3 ot PExBFLFI668 = 61
- R1B= 182B71FA | Reod byte access to unknown bonk #3 at PAxAF1F44E8
Rll= BCESFOES | Rend byte occess to unknown bank #3 ot PBxAFLF3IE6E
RilZ= B4B4F434 | Reod word occess to unknown bank #3 at PAxAF154CEE
RB13= ACESFOCS | Write bwte occess to unkhnown bank #3 ot PExAFLF2EE8 = 23
LRE = BEAI9ECY | Write bwte access to unknown bank #3 ot PExEFLFICAA = 4@
PC = BEED33A4 | Write byte occess to unknown bank #3 ot PExBFLF30EE = 61
Newton i

nEly ift usr Write word access to unknowh bonk #3 ot PExEFA0GAEE (AEEEEEEE ) '
Write word access to unknown bonk #3 ot PBx<EFA954680 (AB0ABE4E%
Read word access to unknown bonk #3 at PExBFBEDAAE
| Reod word access to unknown bonk #3 at POxEFBSC4EE
| Read word occess to unkhown bank #3 ot PAEFAI356E
| Write word occess to unknown bank #3 ot PBxEFASCCEE (ABORBESE )
| Write word occess to unknown bonk #3 ot PAxAFASCABA (B4AAFA3A7
TH3= 162CAD4E | Write word acoess to unknown bank #3 ot POxEFASC4EE (ABOEEAEE
RTC= AEATAESA | Write word occess to unknown bonk #3 ot PAxGFAEDEAA (A484F433)
Alm= AEATEZAE | Write word ococess to unknowh bonk #3 ot PAxEFASD4EE (A40AF434 %

|

|

[

|

|

I

THB= BEREEDEA

TH1= BEABBEEEA
TH2= 1B47BEBC

Mewton 2.1 (7170063
©1993-1997
Apple Cornputer, Inc.

Allvi IR = BEEEEAEE | Write word access to unknown bonk #3 ot PBxEFASDEED (AEORBEFF )
rights reserved.

ICR= BESFES44 | Read word access to unknown bank #3 at PAxBFESE4EE

FM = BCYFE3EE | Write word gcoess to unknown bonk #3 ot PB«<EFAY96EE0 (AE0RBEEE%
IC1= BEEFE3A4 | Write word access to unknown bonk #3 ot PB:EFA9GAEE (ABOEEEEE )
IC2= ACEERAEE | Write word access to unknown bonk #3 ot PExEFA950600 (A00REE48%
IC3= AA4aEE84 | Break at BEED334AR

Empty InputBuffer__19TFramedszsyhncSerToolFPUL+B
BEED3ZAR * mov 112, rl13

BEEDEZA4  stmdb risl, {r4-riz, lr-pc}
BEED33AE  =ub ril, ri2, # (4)

BEEDIZAC  mov 4, rA@

BEEDI3EA mow 5, ril

=




E-‘: Terminal Fichier ~Edition Défilement arriére Police Fenétre  Aide

ACEIFAE4

i o Rl = ACESFOCE
Welcome i i RZ = BEBEL1ECEC
B3 = AEREEEEE
R4 = ACESFAE4
FE - ABREEEEE

| Write word occess to unknown bonk #3 ot PAxAFASEAGA (ARABEAAG6T
| Write word ococess to unknown bank #3 ot PAxAFASSAEE (ABAAEALE )
| Write byte gccess to unknown bonk #3 ot PExBFLFZA8A = 62
| Write byte occess to unknown bonk #3 ot PExAFIFSARE = 79
| Write byte occess to unknown bonk #3 ot PExBFLF3888 = 69
| Write byte ococess to unknown bonk #3 ot PExBF1FZABEE = 61
Please take a few minutes to go through R6 = BCESFEEA | Reod byte access to unknown bonk #3 ot PExEF1F4488
this tour. RY = BEBAEEEA | Read bvte aoccess to unkhnown bonk #3 ot PAxBF1F300E
R& = BCESFAFC | Reod word occess to unknown bonk #3 at PAxAF184CHEE

|

|

|

|

|

|

|

|

You'll have an opportunity to personalize RS9 = BCESFEEA | Write byte occess to unknown bonk #3 ot PExBF1FZE8E
your Newton device. Fif= 18ZE7IF@ | Write byte ocoess to unknown bonk #3 ot PExEFLFSCEE = 408
Ell= ACESFOES | Write byte occess to unknown bonk #3 at PAxAFLFIEEE = 61
Tap Continue when you're ready. R12= B4B4F434 | Write word ocoess to unknown bank #3 ot PExEFA96AEE (ABOAEAGE )
R13= BCE3FOCE | Write word occess to unknown bonk #3 ot PExEFE9S4E0 (ABEERE4A
LE = BE8395C4 | Read word occess to unknown bank #3 ot PAxBFASDEEA
PC = BEBS95CE | Reoad word access to unknown bank #3 at PExBFBSC4EE
nEly ift usr Read word occess to unknown bank #3 at PExBFEOSSEE
| Write word occess to unknown bonk #3 ot PBxBFESCCHEE (AEEREESE
| Write word access to unknown bonk #3 ot POxEFOSCAED (A40AFA3E
| Write word occess to unknown bonk #3 ot PExEFOSC4E0 (ABEEEEEE Y
| Write word access to unknown bonk #3 ot PExAFAI0OEE (A48AF433%
| Write word ocoess to unknown bank #3 ot PBxEFAS04EE (A40AF434 7
| Write word occess to unknown bonk #3 ot PAxAFAS0EEA (AEESAAFF )
TH3= 162CAD4E | Reod word occess to unknown bank #3 ot POxAFAIE4HE
RTC= AEATABAE | Write word occess to unknown bonk #3 ot PExGFA96EA8 (AABAGAGE
Alm= AEHTEZAE | Write word ocoess to unknown bonk #3 ot PBxEFA96AEE (ABOAEAEE )

|

|

[

|

|

|

1]
(a8}
o

THB= BEEEEGEA

TH1= BEEEBEEEA
TH2= 1B47BEBC

IR = BEEEEEEE | Write word access to unknown bonk #3 ot PAx<EFA95EE0 (AE0RB646%
ICR= AESFE3A4 | Break at BEEDE3AA

FM = BCYFE3ES | po = BEEZ9ECH

IC1= AEEFE3A4 | Break at BEE395C4

ICZ= ACEEEEER | Breakpoint set ot BEELIZA0

‘t IC3= AA4A5E84 | Break at BEE39ECH

P2 8 Q s

Extras InOut Names Dates Undo Find Assist

Dolnput__13TAsyncSerToolFy+E4

BEEZ95CY movs rl, r@

BEAZIECE  mov TZ, #8 (@)

BEEZSECC  beq Dolnput__13TAsvncSerToolFw+F4 [BxBEE356684 ]

4 ARAIE0E  teq i, # (6}
i BEA3IS04  moveq rl, #3 (@3
=

“ * break PAADZZAR
i run
™
r »
&




Ei' Terminal Fichier ~Edition Défilement arriére Police Fenétre  Aide

paul @ droopy

Jalalalzla s 5]

- 1 Pl = BC4ARBEEA
Waelcome RZ = BC1BBFCS
R3 = BEEAREEL
R4 = BF1534EA
RE - AC4ABRBEA
Please take a few minutes to go through RE = BC1AG4E4
this tour. R? = BEEEAEGA | Write word acocess to unknowh bonk #3 ot POxEFA93460 (AEEEEE48 %
FE = ACIEBFFS | Reod word occess to unknown bonk #3 ot PBxBFESCABE

| pc <« BBAIIECE
|
|
|
|
|
|
|
3 Ll - = I
You'll have an opportunity to personalize R9 = BARARARA | Reod word occess to unkhown bonk #3 ot PExEFAGC4ES
|
|
|
|
|
|
|
|

Break ot BEE3IAECY

Breakpoint zet ot BEADIZAE

Break ot BEE3IIECY

Write byte access to unknown bank #3 ot PE<EFLFSEEE = BA

Write byte access to unknown bank #3 ot PExEFLIFz3R6 = 22

Write word acoess to unknown bonk #3 ot PExEFA96EEE (AEORBEEEE %

R1A= FFFFDEES | Read word access to unknown bonk #3 ot PExBFEYSE5EE
i) Newton R1l= BCEEE3ES | Write bywte accezz to unknown bank #3 ot POxBFLIF20E8 = 42
This unit requires immediate Rl2= ARBABSFC | Write byte occess to unknown bonk #3 ot PExAFLF3ICER = 4A
repair. Factory calibration has been El3= ACARASAS | Write byte occess to unknown bonk #3 ot PExBAFLFZE8E = 61
lost. It will not charge batteries LE = BEBEE180 | Write byte access to unknown bank #3 at PExBFLF36EE = BA
until this problem is corrected. PC = BEBEASEC | THainPlotformbriver ::Power0ffSubsysten{ BEEEEAEZ
nZcy IFE swve THainPlatformbr iver @ :Power0f f Subsysten] BABEAAZD
nZly ift usr THainPlatformDriver : :Power0ff Subsysten! BEEEAAZE
THainbisplayDriver: :BLit{ PM=BC1G7D3C, R=BC0IAD1A, R=ACDOADIA, long )
| sre: (£=8;1=8;b=480;r=3287, dst: (t=0;1=0;h=450;r=320"
| PMainSoundDr iver = :0utputIsRunhing
| PMainSoundDr iver : :PowerOutputOng 8 7
| PHainSoundDriver : :PowerOutputOn
TM3= 16CCEEF4 | PMoinSoundDriver ::ScheduleOutputBuffer{ BEAEAAEL, ABAEEEAR
RTC= AEBTEEAE | PMainSoundDriver::OutputIzEnobled
Alm= AEBTEZAE | PMainSoundDriver::StartOutput
|
|
I
|
|
|

Tmr= 1ECCSCEA
THB= BEEEEGEA
TH1= BHEEEEEE
TH2= 1BCDAEEE

IR = BEEEEA4E | THMainlisployDriver::Blit({ PM=BC1E708C, R=BC09AGE4, R=ACDIAGE4, long )
ICR= BESFE3A4 | sro: (t=192;1=1263b=242;r=194%, dst: (t=192;1=1263b=242 ;=194

FM = BCTFE3EE | THMainPlaotformbeiver ::PauseSysten

IC1= AEEFEZA4 | Swetem iz poused

ICZ= ACAaEEaa | Waiting for next interrupt

; IC3= AA4E3084 | Mo next interrupt (nt=ERDESESR4, L=EBCFEVFC, T3=1ACC3EF4, d=DEA3DLA4)

goyMbEBS b | 5+E5C24
BEBPEEEE  ldnio r131, {pc}
BEGBEEEC andeq ré, ré, ri3, lsl # (2}
BEEBAELE  stmdb i3, {ir}

BEGAAE14 ldr v, BxAAZ0EEZE

BESEERLS  mocr 18, @, lr, cr@, cra, {6}
> Lun

Ireuk BEE0I3AR

run




How Einstein
Emulator works and
how we will be able to
port NewtonOS



The N2 Platform (2.1 units)

* Apple meant to license the N2 platform (2.1
units) to third party hardware manufacturer
* Schlumberger’s Watson has custom hardware
* There is room for ROM Extensions (REXes)

coming after Apple’s ROM.

* Drivers for custom hardware
* Patches

* Packages




The P-Class mechanism (i)

* NewtonOS is one of the first operating system
written in an object oriented programming
language (C++, not NewtonScript)

* C++ lacks dynamism with interfaces and
implementations being chosen at runtime. In
other words, drivers cannot be written without
some glue.

* NewtonOS team defined P-Classes with
drivers in a registry that can be replaced
(overridden)



The P-Class mechanism (ii)

* There is an interface called TStore for storage
of objects on flash memory.

* There are two implementations in NewtonOS:
TPackageStore (for read-only stores in
Newton packages) and TFlashStore (for
internal memory and linear cards)

* One can provide a new implementation called
TATAStore for ATA cards

* Same with, e.g., sound codecs (built-in: GSM,
DTME, provided by packages: MP3, Macintalk)



The P-Class mechanism (ii

#ipclude <Hewton.hl
#jipclude <Protocols.hi
#jipclude <HewtlD.hi

struct Screenlinfo 4

ULong
ULang
ULong
ULong
UShort
UShort
ULong
ULong
EH

£id

fScreenHeight;  // BEEEE140 (3200 height
fSereanlidthy  fF BEREEIES (428} width
fBitsPerPixel; // BEEEEE04 (depth? )

ik nawn_BC; FF BEEBEEST S5 (70
fResolutionX; // BBG46064 100,100 (bpi?)
fResolutionys  FF

flnknown_14; AF BEEBEEzE 32 {70
flnknown_15; JF BEEBEEzE 32 {70

SfF Protocol for the screen driver.

SO hauthor Paul Gugot <pguuot@lkallisus.nets
iii “author Micolas Zinovieff <krugozorfpoulet.orgs

FROTOCOL TScreenDriwer @ public TProtoool
i

public:
woid
ULong
ULong
ULong
ULong
ULong
ULang
lang
woid
ULong
ULong
ULong
ULong

EH

#apdi f

Deletel );

ScreenSetupd 3;
GetScreen | nfo{Screan|nfok);
Power i t4 3

Fower0ny ;3

PowerOf i 3;

Elit{FixelMap*, Rect*, Rect*, long);
GetFeaturel long );

SetFeature(long, long);
AutoRdjustFeaturasi i}

DoubleBEli t{FixelMap*, PixelMap*, Rect*, Rect*, long);

Enter|dleMode] };
ExitldleModey 3}

/¢ _TSCREEMDR | YER_H

)

* There is a P-Class interface for the
platform driver and an
implementation for the Voyager
Chipset. Hence we do not need to
know the exact Voyager
specifications

* There are P-Classes for other
hardware elements : battery, screen,
tablet, sound, etc.



S hext!

’

What




Future of the Emulator itself

* The emulator allowed/will allow us to :

* Understand the boot problems of some units

* Understand and fix the calibration problem

* Improve and develop more easily programs
that access to the bowels of the NewtonOS

* Read flash cards directly on a laptop and
exchange data more easily (maybe coupled
with the DCL)

* Work & test system patches without
damaging any unit



Porting NewtonOS

* The emulator allowed us to discover the basic
hardware locations required to run NewtonOS
(e.g. timers) and the specifications of the
drivers (e.g. we know how to turn the
backlight)

* We could either

* run the emulator (with |IT for a decent
speed) on a PDA

* or run NewtonOS natively with custom
drivers and little modifications



P
() i

| B[ 2]
Im

My suggestion

* The emulator solves the hardware problem.
However, NewtonOS lacks up-to-date software
for web browsing, cryptographic, modern
networking.

* We could put NewtonOS on top of Unix and
take advantage of all the open source
software running on Unix

* We then could extend NewtonOS with

hooks to allow applications to take advantage
of this code

D

ol




Conclusion



Conclusion

* Einstein is a set of propositions for a
community-run future for the platform.

* These propositions have in common a
migration to new hardware and no
complete rewrite of NewtonOS.

* The emulator is just the first step.



New post-Apple era!



Questions ?

pguyot@kallisys.net
http://www.kallisys.com/



