
Newton never dies
It only gets new 

hardware

Paul Guyot
Worldwide Newton Conference 2004



Introduction



Introduction (i)

• Decreasing, limited supply of hardware
• What is so great about the Newton cannot be 

found in other PDAs and Operating Systems :
• Best industrial handwriting recognition
• Data-centered
• Newton Intelligence

• Apple will not license NewtonOS to the 
community



Introduction (ii)

• NewtonOS begins to be a little bit rusty for 
today’s uses and this is going to worsen:
• No decent Java virtual machine
• No CSS2 web browser and no cryptographic 

package (SSL/SSH)
• Poor IPv4 (current version of Internet) and 

no IPv6 (next generation of Internet)



Introduction (iii)

• In spite of huge efforts to keep the Newton up 
to date
• WiFi driver with many supported 802.11b 

cards
• Bluetooth drivers
• Phone-like exchange capabilities (V-Cards...)



What kind of future?



“Let’s rewrite NewtonOS”

• “Don’t you think we could rewrite a new 
operating system with all the good things of 
NewtonOS?”
• Huge task (think about the cost of the 

Newton)
• No immediate reward until the project is 

well advanced
• It cannot be too close to the Newton 

because of Apple’s patents
• No good handwriting recognition
• NewtonScript is a key element of NewtonOS



GNUton
(NewtonScript everywhere)

• “The Newton is NewtonScript, let’s write a 
NewtonScript environment”
• Since NewtonOS 2.0, less and less 

NewtonOS code is in NewtonScript.
• NewtonScript only is for the interface and it 

only works on top of native code.
• There is a huge amount of code to rewrite.
• Many features such as the handwriting 

recognition are not written in NewtonScript.



The Einstein Project

• 1- Write a Newton Emulator with all the 
hardware

• 2- Port NewtonOS to ARM-powered PDAs

• 3- Extend NewtonOS on this new hardware

• Each small step is important for the platform



The architecture of the 
Newton (2.1 units)



The problem of the
Voyager Chipset

• “Perhaps one day, [Brian Parker (of Palm 
Emulator fame)] and Paul Guyot will team up 
and write the Newton emulator for the rest of 
us. Where oh where can we get the Voyager 
chipset instructions?” (Adam Tow, 2004)
• Cirrus developed it with Apple and will not 

produce any or give us the specifications.



The complexity of an 
emulator

• “A Newton emulator has to emulate not only 
the ARM CPU but all the specialized ARM 
MMU functions and the custom hardware for 
DMA, IR, Flash, display, etc, etc. Not a simple 
job. I would estimate (and I have 30 years 
experience in systems and software 
engineering) that this is at least 5 man years of 
effort; attempting it without the detailed 
hardware documentation for a Newton 
MP2000 would almost certainly fail.” (John 
Arkley, Apple Employee #88, 04/1999)



Is it pointless?









How Einstein 
Emulator works and 

how we will be able to 
port NewtonOS



The N2 Platform (2.1 units)

• Apple meant to license the N2 platform (2.1 
units) to third party hardware manufacturer
• Schlumberger’s Watson has custom hardware

• There is room for ROM Extensions (REXes) 
coming after Apple’s ROM.
• Drivers for custom hardware
• Patches
• Packages



The P-Class mechanism (i)

• NewtonOS is one of the first operating system 
written in an object oriented programming 
language (C++, not NewtonScript)

• C++ lacks dynamism with interfaces and 
implementations being chosen at runtime. In 
other words, drivers cannot be written without 
some glue.

• NewtonOS team defined P-Classes with 
drivers in a registry that can be replaced 
(overridden)



The P-Class mechanism (ii)

• There is an interface called TStore for storage 
of objects on flash memory.

• There are two implementations in NewtonOS: 
TPackageStore (for read-only stores in 
Newton packages) and TFlashStore (for 
internal memory and linear cards)

• One can provide a new implementation called 
TATAStore for ATA cards

• Same with, e.g., sound codecs (built-in: GSM, 
DTMF, provided by packages: MP3, Macintalk)



The P-Class mechanism (iii)

• There is a P-Class interface for the 
platform driver and an 
implementation for the Voyager 
Chipset. Hence we do not need to 
know the exact Voyager 
specifications

• There are P-Classes for other 
hardware elements : battery, screen, 
tablet, sound, etc.



What’s next?



Future of the Emulator itself

• The emulator allowed/will allow us to :
• Understand the boot problems of some units
• Understand and fix the calibration problem
• Improve and develop more easily programs 

that access to the bowels of the NewtonOS
• Read flash cards directly on a laptop and 

exchange data more easily (maybe coupled 
with the DCL)

• Work & test system patches without 
damaging any unit



Porting NewtonOS

• The emulator allowed us to discover the basic 
hardware locations required to run NewtonOS 
(e.g. timers) and the specifications of the 
drivers (e.g. we know how to turn the 
backlight)

• We could either
• run the emulator (with JIT for a decent 

speed) on a PDA
• or run NewtonOS natively with custom 

drivers and little modifications



My suggestion

• The emulator solves the hardware problem. 
However, NewtonOS lacks up-to-date software 
for web browsing, cryptographic, modern 
networking.
• We could put NewtonOS on top of Unix and 

take advantage of all the open source 
software running on Unix

• We then could extend NewtonOS with 
hooks to allow applications to take advantage 
of this code



Conclusion



Conclusion

• Einstein is a set of propositions for a 
community-run future for the platform.

• These propositions have in common a 
migration to new hardware and no 
complete rewrite of NewtonOS.

• The emulator is just the first step.



New post-Apple era?



Questions ?
pguyot@kallisys.net

http://www.kallisys.com/


